On Transforming a Tchebycheff System into a Complete Tchebycheff System

R. A. Zal.Ik
Deparment of Mathematics, Ben Gurion University of the Neger, Beersheba, Israel

Communicated by Oted Shisha
Received December 2, 1975

Let y_{n}, \ldots, r_{n} be real-valued functions defined on a totally ordered set A. The system $\left\{y_{i}, \ldots, y_{n}^{\prime}\right\}$ is said to be a Tchebycheff system (T-system) on A, provided that for every choice of points $t_{6}<\cdots<t_{n}$ of A, the determinant $D\left(y_{0}, y_{1}, \ldots, y_{n} / t_{0}, t_{1}, \ldots, t_{n}\right)=\operatorname{det}!y_{(}\left(t_{j}\right): i, j=0, \ldots n$ is strictly positive, whereas if the determinant is merely nonnegative, the system is called a Weak Tchebycheff system (WT-system). If $\left\{y_{0}, \ldots, y_{i}\right\}$ is a T-system on A for $k-0, \ldots, n$, then $\left\{y_{0}, \ldots, y_{n}\right\}$ is called a Complete Tchebycheff system (CTsystem) on A. The preceding definitions are consistent with Karlin and Studden [1].
M. G. Krein proved that if A is an open interval and $\left\{y_{0}, \ldots, y_{p}\right.$; is a T-system on A, then the linear span of the functions y_{1}, \ldots, y_{n} contains a CT-system thereon (cf. [2]). It seems that Krein never published his proof, and it was apparently Németh ([3], corollary on p. 310), who publisined the first proof of Krein's theorem. This theorem was recently generalized by Zielke [4], who showed that it holds for sets having "property (D)": a set A has property (D) if neither sup A nor inf A are contained in A, and for any two points of A there is a third point of A in between.

The purpose of this paper is to further generalize Krein's theorem, presenting at the same time a very short and elementary proof. Specifically, we shall prove the following assertion.

Throrins. Let A be a totally ordered set. If A has no smallest nor greatest element. then the linear span of every T-system on A contains a CT-swstem thercon.

Proof. Assume first that A is a set of real numbers. Let $\left\{q_{0}, \ldots, 4 n\right\}$ be an ordered set of distinct points of A, and let $\left\{y_{0}, \ldots, y_{n}\right.$, be a T-system on A. Let $D \quad D\left(r_{1}, \ldots, r_{n}^{\prime}\left(q_{1}, \ldots, q_{n}\right)\right.$, and define the functions r_{r}, by means of the formula $c_{,}(t) \quad D\left(r_{i}, \ldots, y_{m} q_{q_{1}}, \ldots, q_{i-1}, t, q_{i \in 1}, \ldots, q_{n}\right)$. The functions r_{n}, \ldots, l_{n} are clearly in the linear span of the functions $!_{i}, \ldots,!_{n}$. Moreover, since
$D\left(v_{1}, \ldots, \imath_{n} / q_{0}, \ldots, q_{n}\right)=D^{n+1}>0$, proceeding as in [5], Lemma 2, we easily see that $\left\{v_{0}, \ldots, v_{n}\right\}$ is a T-system on A.

Let $\left\{b_{m}\right\} ; m \cdots 1,2, \ldots$ be a strictly increasing sequence of points of A, all to the right of q_{n}, and converging to sup A, if A is bounded above, or to $\cdots \infty$ if it is not. Define $z_{n}=(-1)^{n} c_{0}+(-1)^{n-1} v_{1}+\cdots+v_{n}$ and, for $i=$ $0, \ldots, n-1, z_{i}(\cdot, m)=r_{i}-c_{i}(m) z_{n}$, where $c_{i}(m)=v_{i}\left(b_{m}\right) / z_{n}\left(b_{m i}\right)$. (Note that the functions $(-1)^{n-i} c_{i}$ are all strictly positive to the right of q_{n}; thus z_{n} also has this property.) It is clear that, for $i=0, \ldots, n-1$, and $m=1,2, \ldots$, $z_{i}\left(b_{m}, m\right)=0$; it is also quite obvious that $\left\{z_{0}(\cdot, m) \ldots, z_{n-1}(\cdot, m), z_{n}\right\}$ is a T-system on A.

Let A_{m} denote the set of points of A that precede b_{m}. We assert that if $m>m^{\prime}$, then $\left\{z_{0}(\cdot, m), \ldots, z_{n-1}(\cdot m)\right\}$ is a T-system on $A_{m^{\prime}}$. In fact, let $t_{0}<$ $\cdots<t_{n-1}$ be points of A_{m}. Since $t_{n-1}<b_{m}$, the conclusion follows by noting that $0<D\left(z_{0}(\cdot, m), \ldots, z_{n-1}(\cdot, m), z_{n} / t_{0}, \ldots, t_{n-1}, b_{n}\right) \cdots z_{n}\left(b_{m}\right) \cdot D\left(z_{0}\right.$ $\left.(\cdot, m), \ldots, z_{n-1}(\cdot, m) / t_{0}, \ldots, t_{n-1}\right)$, and that $z_{n}\left(b_{n}\right)>0$.

By the definition of the coefficients $c_{i}(m)$, it is clear that they are bounded between 0 and 1. Thus, there exists a sequence $\left\{m_{i}\right\} ; k-1,2, \ldots$, and numbers $c_{i 1}, \ldots, c_{n-1}$, such that $\lim _{k \rightarrow r} c_{i}\left(m_{k}\right)=c_{i} ; i=0, \ldots, n-1$. For $i=0, \ldots, n-1$, let $z_{i}=c_{i}-c_{i} z_{n}$: clearly $\left\{z_{0}, \ldots, z_{n}\right\}$ is a T-system on A, and from the assertion proved in the preceding paragraph we readily see that $\left\{z_{0}, \ldots, z_{n-1}\right\}$ is a WT-system thereon.

Assume now that for some choice $t_{0}<t_{1}<\cdots<t_{n-1}$ of points of A,

$$
\begin{equation*}
D\left(z_{0}, \ldots, z_{n-1} / t_{0}, \ldots, t_{n-1}\right)=0 . \tag{1}
\end{equation*}
$$

Let $t_{n}>t_{n-1}$ be a point of A. Since $D\left(z_{0}, \ldots, z_{n} / t_{0}, \ldots, t_{n}\right)>0$, there is an integer $i, 0 \leqslant i \leqslant n-1$, such that $D\left(z_{0}, \ldots, z_{n-1} / t_{0}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}\right)>0$. Define $z(t)=D\left(z_{0}, \ldots, z_{n} / t_{0}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}, t\right)$. Clearly z can be represented as a linear combination of the functions z_{9}, \ldots, z_{n}. The coefficient of z_{n} in this representation is $D\left(z_{0}, \ldots, z_{n-1} / t_{0}, \ldots, t_{i-1}, t_{i=1}, \ldots, t_{n}\right)$, and thus strictly positive, whence $\left\{z_{0}, \ldots, z_{n-1}, z\right\}$ is a T-system on A. On the other hand, taking into consideration that $z\left(t_{j}\right)=0 ; j=0, \ldots, i-1, i: 1, \ldots, n$, that $(-1)^{n-i} \cdot z\left(t_{i}\right)>0$, and developing by the last row, we see from (1) that if $t_{11}{ }^{\prime}$ is a point of A to the left of t_{0}, then $D\left(z_{0}, \ldots, z_{n-1}, z / t_{0}{ }^{\prime}, t_{6}, \ldots, t_{n-1}\right)$ $(-1)^{n i \cdot 1} z\left(t_{i}\right) \cdot D\left(z_{0}, \ldots, z_{i-1} / t_{0}{ }^{\prime}, t_{0}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n-1}\right) \leqslant 0$ which is a contradiction. Repeating the above procedure for the system $\left\{z_{0}, \ldots, z_{n-1}\right\}$ and so on, the conclusion follows.

The preceding proof was carried out under the additional assumption that A is a set of real numbers. In order to prove the general case, it will suffice to show that if there is a T-system of at least two functions, defined on A, then there is a real-valued, strictly increasing function on A. Let $s_{1}<s_{3}<s_{3}$ be points of A. Let P denote the set of points of A to the left of s_{3}, and Q the set of points of A to the right of s_{1}. Assume first that the points q_{i} employed in
the definition of the functions $t_{\text {; }}$ above, are all to the left of s_{1}. If t_{0}, t_{1} are points of Q, it is clear that $0<D\left(c_{11}, \ldots, r_{n} q_{10}, \ldots, q_{n} \geq, t_{11}, t_{1}\right)=D^{\prime \prime} i$. $D\left(r_{n-1}, r_{n} / t_{0}, t_{1}\right)$.

Thus $\left\{r_{n-1}, r_{n}\right\}$ is a T-system on Q. In similar fashion, it is seen that $r_{n} \cdots 0$ on Q, from which follows that $\cdot r_{n-1} / r_{n}$ is strictly increasing thereon. Assuming now that the points q_{i} are all to the right of s_{3}, it can similarly be seen that t_{1} / t_{0} is strictly increasing in P. Since P and Q have a common point, it is readily seen that there exists a strictly increasing, real-valued function h on A. The system $\left\{z_{0}, \ldots, z_{n}\right\}$ given by $z_{i}(t) \cdots y_{i}\left[h^{-1}(t)\right]$ is a T-system on $h(A)$, and we have therefore transformed the problem into the one considered in the first case.
Q.E.D.

References

1. S. Karlin and W. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
2. M. A. Rutman, Integral representation of functions forming a Markov series, Dokl. Akad. Nauk. SSSR 164, No. 5 (1965), 989-992. English translation, Sorjef Math. Dokl. 6; Amer. Math. Soc. (1965), 1340-1343.
3. A. B. Németh, About the extension of the domain of definition of the Chebyshev systems defined on intervals of the real axis. Mathematica (Cluj) $\mathbf{1 1}$ (1969), 307-310.
4. R. Zielke, On transforming a Tchebyshev-system into a Markov-system, J. Approximation Theory 9 (1973), 357-366.
5. R. A. Zalik, Existence of Tchebychell extensions, J. Math. Anal. Appl. 51 (1975). 68-75.
